
Partially-Supervised Plants: Embedding
Control Requirements in Plant Components

J. Markovski, D.A. van Beek, and J.C.M. Baeten?

Eindhoven University of Technology
P.O. Box 513, 5600 MB Eindhoven, The Netherlands
{j.markovski,d.a.van.beek,j.c.m.baeten}@tue.nl

Abstract. Supervisory control deals with automated synthesis of con-
trollers based on models of the uncontrolled system and the control re-
quirements. In this paper we share the lessons learned from synthesizing
controllers for a patient support system of an MRI scanner regarding
the specification of the control requirements. We learned that strictly
following the philosophy of supervisory control, which partitions specifi-
cations in an uncontrolled plant and control requirements, may lead to
unnecessarily complex specifications and duplication of information. In
such cases, the specification can be substantially simplified by embedding
part of the control requirements in so-called partially-supervised plants.
To formalize the new concepts, we apply a recently developed process-
theoretic approach to supervisory control. The new method for analysis
of the models provides a better insight into their underlying behavior,
which is demonstrated by revisiting the models of the industrial study.

1 Introduction

Modern market trends dictate lower development costs and shorter time-to-
market, while increasing demands for better quality, performance, safety, and
ease of use. Among else, this raises the demands on the development of con-
trol software. Traditionally, software engineers write control software based on
informal specification documents, amounting to a time-consuming iterative pro-
cess as the control requirements constantly change during product development.
This issue gave rise to supervisory control theory of discrete-event systems [9,
3], where high-level supervisory controllers are synthesized automatically based
upon formal models of the hardware and control requirements.

The supervisory controller observes the discrete-event behavior of the system
by receiving sensor signals from ongoing activities. Based upon these signals it
makes a decision which activities are allowed to be carried out and sends back
control signals to the hardware actuators. Under the assumption that the super-
visory controller can react sufficiently fast on input, one can model this feedback
loop as a pair of synchronizing processes. The model of the uncontrolled system,
referred to as plant, is restricted by the model of the controller, referred to as
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Fig. 1. Starting a car engine: a) plant component and b) control requirements.

supervisor. Traditionally, the plant is modeled as a set of observable traces of
events, given as a set of synchronizing components (automata), whose joint rec-
ognized language corresponds to the observed traces. The events are split into
controllable events, which can be disabled by the supervisor in the synchronous
composition (typically actuator events), and uncontrollable events, which must
always be allowed by the supervisor (typically sensor events). The control re-
quirements specify allowed behavior again as sequences of events, leading to
event-based supervisory control theory [9, 3].

In this paper, we revisit an industrial study regarding supervisory control of
a patient support system for MRI scanners of Philips Healthcare [11]. We discuss
the lessons learned from specifications of the plant and the control requirements.
Namely, following the supervisory control paradigm, the plant should be modeled
as unrestricted with respect to the controllable events, i.e., disabling of such
events should be stated in the control requirements. However, following this
paradigm may lead to duplicated specifications, slightly altered only to specify
some controllable events that should be restricted. This situation usually occurs
when one wants to make the specification of the (unsupervised) plant complete
in the sense that all possible behavior is included, despite knowing it is irrelevant.

To provide a better intuition, we consider the process of starting a car engine.
After turning the key in position ON, the engine can be started by turning the
key to position start and releasing it (event KeyStart). Once it is started, by
turning the key to position OFF, it is switched off. However, in position ON,
there is no prohibition to turn the key again to “start” the already running
engine. This is encountered (by accident) by almost everyone that drove in a
car, observing strange noises produced by the engine. From a supervisory control
point of view, the position of the key defines the behavior of the (unsupervised)
plant component that models the starting of the car, depicted in Fig. 1a). The
control requirements show the correct way of starting a car, depicted in Fig. 1b).
Note that the requirements actually duplicate the plant component, omitting
only the self loop in ON-RUN that specifies the turning of the key, while the
engine is running. Moveover, every driver knows the correct way of starting a
car, so we could argue that the partially-supervised behavior of the plant actually
comprises the component in Fig. 1b). This makes for a more readable plant
specification, while reducing a (superfluous) control requirement.

In the remainder, we formalize the notion of partially-supervised plants and
we develop a method for analysis of the plant and control requirements that
provides better insights into the underlying behavior. To this end, we employ



a recent process-theoretic approach to supervisory control that captures the
standard notion of controllability by means of a behavioral preorder termed
partial bisimilarity [2, 10]. We retain the trace-based semantics by restricting to
deterministic automata and we adapt partial bisimilarity to automata as used
in supervisory control [3].

2 Supervisory Control Theory

We introduce some preliminary notions of automata and language theory as used
in supervisory control theory [3]. Let A = C ∪U be the set of all events that can
be observed in the plant, with C being the set of controllable events and U the
set of uncontrollable events, such that C ∩ U = ∅. We form traces and languages
in a standard manner, i.e., t ∈ A∗ is a trace and L ⊆ A∗ is a language, where
A∗ , {a1a2 . . . an | ai ∈ A for 0 ≤ i ≤ n, n ∈ IN} and ε denotes the unique
empty trace a1 . . . an for n = 0. By t·t′ we denote the concatenation of the traces
t, t′ ∈ A∗ and by L·L′ , {t·t′ | t ∈ L, t′ ∈ L′} the concatenation of languages.
We omit · when clear from the context. We say that a language is prefix-closed
if L = L, where L , {t | there exists t′ such that tt′ ∈ L}.

We define a discrete-event automaton as a tuple P = (SP ,AP ,→P , sP ,SmP ),
where SP is a set of states, AP is the alphabet or the set of events used for
synchronization, →P ∈ SP × AP × SP the transition relation, sP the initial
state, and SmP is the set of marked states that denote successfully executed jobs.
By F we denote the set of all finite automata. We define→∗P ∈ SP ×A∗P ×SP as

s
ε→∗ s for all s ∈ SP , and s

at→∗P s′ for a ∈ AP and t ∈ A∗P , if there exists s′′ ∈ SP
such that s

a→P s′′
t→∗P s′. By s

t→∗P we denote that there exists s′ ∈ SP such that

s
t→∗P s′. Now, the recognized (prefix-closed) language of automaton P is given

by L(P ) , {t ∈ A∗P | sP
t→∗P }. The recognized marked language additionally

requests that the ending state is a marked state given by Lm(P ) , {t ∈ A∗P |
sP

t→∗P s, s ∈ SmP }.
By P1 | P2 , (S1 × S2,A1,→, (s1, s2),Sm1 × Sm2 ) we denote the synchronous

parallel composition of P1 = (S1,A1,→1, s1,Sm1 ) and P2 = (S2,A2,→2, s2,Sm2 ):

(s′, s′′)
a→


(s′, s′′) if a ∈ A1 ∩ A2, s

′ a→1 s
′, and s′′

a→2 s
′′

(s′, s′′) if a ∈ A1 \ A2 and s′
a→1 s

′

(s′, s′′) if a ∈ A2 \ A1 and s′′
a→2 s

′′.

It is easily observed that this composition is commutative and associative [3].
Note that by increasing the alphabet of an automaton with events that occur
in synchronizing automata, the parallel composition would remain the same,
provided that these events were added as self loops in every state.

Suppose that the plant is given by P = (SP ,A,→P , sP ,SmP ) and the control
requirements by R = (SR,A,→R, sR,SmR ). If there exists S = (SS ,A,→S , sS ,SmS )
such that L(P | S) = L(R), then we say that S is a supervisor for P that
achieves R. We refer to P | S as the supervised plant. We ensure that S does not
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disable uncontrollable events by requesting that R is controllable with respect
to P , expressed by L(R)U ∩L(P ) ⊆ L(R) [9, 3]. Controllability is interpreted as
follows. If we observe a desired trace in the plant followed by an uncontrollable
event, then the control requirements cannot request that this uncontrollable
event should be disabled after allowing that trace.

To assure, in addition, that the control is nonblocking, it is also required that
L(R) ⊆ Lm(P ). The condition ascertains that every state can reach a marked
state, guaranteeing that all jobs can be successfully finished, while preventing
deadlocks and livelocks. If R is controllable with respect to P and also L(R) ⊆
Lm(P ), then one can guarantee the existence of a supervisor S, achieving the
desired nonblocking supervised behavior R by restricting the plant P .

In general, the control requirements are not achievable and one seeks a max-
imally permissive (nonblocking) supervisor, its prefix-closed language uniquely
defined for deterministic plants and control requirements as

M =
⋃
{K ⊆ L(R) ∩ Lm(P ) | K is controllable with respect to P}.

In other words, the maximally permissive supervisor enables the greatest achiev-
able nonblocking behavior that is controllable with respect to P and bounded by
R. Consequently, if S is a supervisor for the plant P with respect to the control
requirements R, then L(S) ⊆ L(M) ⊆ L(R) and Lm(S) ⊆ Lm(M) ⊆ Lm(R).

Next, we revisit the supervisor synthesis for a patient support system [11].

3 Supervisor Synthesis for a Patient Support System

The patient support system positions a patient inside an MRI scanner, see Fig. 2.
The system comprises a vertical axis, a horizontal axis, and a user interface. Due
to page limitations, we present only a part of the system [11]. The vertical axis
consists of a lift with a motor drive and end sensors. The horizontal axis contains
a removable tabletop, which can be moved in and out of the bore either by a
motor drive, when the clutch is on, or by hand, otherwise. It contains sensors
to detect the presence of the tabletop and its end positions. A tumble switch
controls table movement and the clutch is controlled by a manual button.

The control should accomplish multiple control objectives. When the opera-
tor operates the tumble switch, the table should move up and down, or in and
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Fig. 3. Plant components for the vertical motor and end sensors.

out of the bore. This depends on the current position of the table and the posi-
tion of the tumble switch. When the manual button is pushed, the clutch should
be released such that the table can be moved manually by hand. Finally, the
table should not move beyond its end positions, and it should not collide with
the magnet. Note that we do not consider faulty behavior in this paper.

This system is more difficult to control then it might appear at first sight.
It contains several complex interactions of components, and the overall finite
state model of the uncontrolled system contained 6.3 · 109 states (64 · 106 states
without user interface). Recall, that here we show just a part of this system.
Nonetheless, the manufacturer estimated one week for manual adaptation of the
control software to meet a change in the control requirement, while adapting
them using supervisor synthesis took merely four hours [11].

We model the plant and the control requirements using automata as given
in Section 2. To visualize automata, we use circles for states, full and dashed
labeled arrows for controllable and uncontrollable events, respectively, incoming
arrows for initial states, and doubly-lined circles for marked states. The plant
and control requirements are composed out of synchronizing models for each of
the components. The alphabets of the automata are comprised of the transition
labels. We assume full observation of the sensors and the actuators.

Vertical Axis The table moves up and down along the vertical axis, which com-
prises one actuator and two end sensors, see Fig. 3. The system should never
be required to move beyond the maximally up and down position. We name the
events such that their purpose becomes clear from the context. Initially, the mo-
tor is stopped and after any movement it should be able to return to its marked
state. Movement is started via events vMoveUp and vMoveDown. If the motor is
moving and a stop event, vStopUp, vStopDown, or vStopTumble is triggered, the
motor slows down. When it comes to a halt, the event vStopped is emitted. The
maximally up and down sensors are active if the table is at the end sensor posi-
tion, otherwise the sensors are inactive. They are modeled by means of automata
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Fig. 4. Control requirements for the vertical motor and end sensors.
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Fig. 5. Plant components for the horizontal motor, end sensors, and table top sensor.

with corresponding (uncontrollable) sensor events vDownOn and vDownOff, for
the down sensor, and vUpOn and vUpOff, for the up sensor.

The sensors only change state when the table moves vertically. Only when the
motor drive is moving the table up, the maximally down sensor can turn off, and
the maximally up sensor can turn on, and vice versa. Although the end positions
must be reachable, movement beyond them is not allowed. This implies that up
movement is only allowed when the table is not maximally up and likewise for the
down movement. Furthermore, up movement must be stopped when the table
is maximally up and likewise for the down movement. In addition, once a stop
event has been issued, there is no need to issue it again. These requirements lead
to the models depicted in Fig. 4.

Note that when we add new events to automata, we are increasing its al-
phabet, and unless we add self loops in every state, we are actually restricting
events in the parallel composition, cf. Section 2.



Horizontal motor

hM
oveO

ut hM
ov

eI
n

hStopped

hInOff
hOutOn

hStopped

hInOn
hOutOff

h
S

to
p
O

u
t

h
S

to
p
T

u
m

b
le

h
S

to
p
T

a
b
le

T
o
p

hInOff
hOutOn

hMoveIn

hMoveOut

h
S

to
p
In

h
S

to
p
T

u
m

b
le

h
S

to
p
T

a
b
le

T
o
p

hInOn
hOutOff

Horizontal in sensor

hInOff

hInOn

hMoveIn hStopIn

Horizontal out sensor

hOutOff

hOutOn

hMoveOut hStopOut

Table top off sensor

hTableTopOn

hStopTableTop
hMoveIn
hMoveOut

hTableTopOff

Fig. 6. Control requirements for horizontal motor, end sensors, and table top sensor.

Horizontal Axis The movement along the vertical axis is analogous to the one for
the vertical axis, with the exception that the table top may be taken off by the
operator, which is detected using an additional sensor. The plant components
dealing with horizontal movement are depicted in Fig. 5, whereas the control
requirements are depicted in Fig. 6.

User interface The user interface consists of a tumble switch that controls the
table movement and a manual button that controls the operation mode via the
clutch. In motorized mode, the tumble switch controls the movement of the table.
In manual mode, the operator can move the table top by hand. When the manual
button is pushed, the clutch is either applied or released, if allowed by the safety
requirements of Fig. 10, leading to motorized or manual mode, respectively. The
manual button push is associated to a safety timeout as manual operation is
allowed only when the table top is on and it is in the topmost position, and the
motors are stopped. As this takes some time, the button push might be forgotten
by the operator. Fig. 7 depicts the plant components modeling the user interface.

Manual button Tumble switch

uManualPushed
uManualTimeout

hClutchOn
hClutchOff

uTumbleNeutral

uTumbleDown

uTumbleUp

uTumbleNeutral

Fig. 7. Plant components for the manual button and the tumble switch.

When the manual button is pressed, either the clutch is applied or released,
or a timeout occurs, that invalidates the button push. When the tumble switch
is down, then either downward or outward movement is allowed, whereas when
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Fig. 9. Plant component relating horizontal actuator and sensor events.

the switch is up, either upward or inward movement is allowed. This is captured
by the control requirements depicted in Fig. 8.

Finally, in Fig. 9, we capture the relationship between the horizontal motor
and sensors. We note that when the clutch is off, every activation/deactivation
of horizontal end sensors is possible, as the operator can move the table top un-
restrictedly. We also note that the component depicted in Fig. 9 results from an
interleaving (nonsynchronizing) parallel composition of a component that gives
the relation between the clutch and horizontal sensor events and a component
that describes motorized horizontal table movement [11].
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To guarantee safe operation of the patient support system, the following
safety movement restrictions apply. To ensure that the patient support table
does not collide with the magnet of the MRI machine, it is required that the
table can enter the magnet only if it is maximally up, and the table can move
vertically only if it is fully retracted (Fig. 10a). The table top can be manually
operated only if the horizontal movement of the motor is stopped (Fig. 10b). In
addition, to change the axis of movement, the tumble switch must be first placed
in neutral position, while the motors can be activated only if the tumble switch
is not in neutral position (Fig. 10c).

One cannot help to notice the duplication of information in Fig. 3 and Fig. 4,
Fig. 5 and Fig. 6, and Fig. 7 and Fig. 8. Moreover, for modelers involved in
this study, the plant components depicted in Fig. 3, Fig. 5, and Fig. 7, are
overly simplified and actually produce the countereffect of making the plant
specification unclear. This is most obvious in Fig. 9, where one can hardly deduce
anything about the relationship between the horizontal actuators and sensors.

In the next chapter, we alleviate some of these issues by embedding a part
of the control requirements into the plant components.

4 Process-Theoretic Approach to Controllability

We present a process-theoretic approach to supervisory control theory that
enables us to manipulate more easily with the underlying notions. We define
controllability from a process-theoretic perspective in terms of a so-called par-
tial bisimilarity preorder. This preorder is meant to capture that uncontrollable
events should not be disabled by the supervisor and it gives the relation between
the original and the supervised plant. It requires that the unrestricted plant sim-
ulates, i.e., it is enabled to perform, every event of the supervised plant, but it



is required that the supervised plant only simulates back uncontrollable events.
We note that in the original process-theoretic setting of [2] we employed labeled
transition systems, whereas here we adjust the behavioral (semantic) relation to
accommodate deterministic automata in the vein of [3].

Definition 1. Let P1 = (S1,A1,→1, s1,Sm1 ) and P2 = (S2,A2,→2, s2,Sm2 ) be
two finite automata with A1 = A2 = A′ ⊆ A. A relation Q ⊆ S1 × S2 is a
partial bisimulation between P1 and P2 with respect to the bisimulation action
set B ⊆ A′ if for all p1 ∈ S1 and p2 ∈ S2 such that (p1, p2) ∈ Q it holds that:

1. if p1 ∈ Sm1 , then p2 ∈ Sm2 ;

2. for all p′1 ∈ S1 and a ∈ A′ such that p1
a→1 p

′
1, there exists p′2 ∈ S2 such that

p2
a→2 p

′
2 and (p′1, p

′
2) ∈ Q;

3. for all p′2 ∈ S2 and b ∈ B such that p2
b→2 p

′
2, there exists p′1 ∈ S1 such that

p1
a→1 p

′
1 and (p′1, p

′
2) ∈ Q;

We say that P1 is partially bisimilar to P2 with respect to the bisimulation action
set B, notation P1 �B P2, if there exists a partial bisimulation Q with respect
to B such that (s1, s2) ∈ R. If P2 �B P1 holds as well, then P1 and P2 are
mutually partially bisimilar with respect to B and we write P1↔B P2.

Note that �B is a preorder relation, making ↔B an equivalence relation for all
B ⊆ A [10]. If B = ∅, then �∅ coincides with strong similarity preorder and ↔∅
coincides with strong similarity equivalence [5, 1]. When B = A, both �A and
↔A turn into strong bisimilarity [5, 1].

By adopting partial bisimilarity as a behavioral (semantic) relation, we re-
place the original language-based equivalence, which also permits the use of non-
deterministic automata in the specification. We note that partial bisimilarity also
accounts for controllability of nondeterministic plants and control requirements,
for more details see [2]. Nonetheless, in the setting of this paper we only consider
deterministic plants and control requirements, as they guarantee existence of a
unique maximally permissive supervisor. The uniqueness is a prerequisite for the
proof of main theorem that enables the embedding of the control requirements.
Moreover, our experience, during execution of several other industrial studies [8,
4, 6, 7], points out to no particular need to employ nondeterministic automata
for modeling purposes.

Definition 2. Automaton P = (SP ,AP ,→P , sP ,SmP ) is deterministic if for all

s, s1, s2 ∈ SP and a ∈ AP it holds that if s
a→ s1 and s

a→ s2 then s1 = s2.

We denote the set of deterministic automata by D. We give properties of partial
bisimilarity that help to relate it to the standard notion of controllability.

Proposition 1. Let P1, P2 ∈ D with P1 = (S1,A1,→1, s1,Sm1 ) and
P2 = (S2,A2,→2, s2,Sm2 ). Then, the following holds:

1. if P1 �B P2, then P1 | P �B P2 | P for every P ∈ D;
2. if P1 �B P2, then P1 �C P2 for every C ⊆ B;



3. P1 �∅ P2 if and only if L(P1) ⊆ L(P2) and Lm(P1) ⊆ Lm(P2);
4. if A2 ⊆ A1, then P1 | P2 �∅ P1 and P2 | P1 �∅ P1; and
5. if P1 �U P2 then L(P1)U ∩ L(P2) ⊆ L(P1).

Proof. Property 1. states that the partial bisimilarity preorder is a precongruence
for the parallel composition, as shown in [2].

Property 2. is straightforward, by following Definition 1 [2].
Property 3. follows from Definition 1 and the definitions of recognized and

marked languages, and it has been given explicitly for simulation in [5].
Property 4. follows directly from the definition of the parallel composition

and the fact that A2 ⊆ A1 implies that P2 can only restrict the transitions of
P1 and, therefore, L(P1 | P2) = L(P2) ∩ L(P1) [3] implying P1 | P2 �∅ P1 and
P2 | P1 �∅ P1 by property 2.

Property 5. has been previously stated in [10] in a slightly different context,
but having in mind its significance, we will give another proof in this setting.
Suppose that P1 �U P2 holds. By Definition 1, there exists a partial bisimula-
tion Q such that (s1, s2) ∈ Q. We show that L(P1)U ∩ L(P2) ⊆ L(P1) holds by
contradiction. Suppose that there exists a trace t ∈ L(P1) such that tu ∈ L(P2)

for some u ∈ U , but tu 6∈ L(P1). As t ∈ L(P1), we have that s1
a1→ . . .

an→ sn for

si ∈ S1 and t = a1 . . . an. Then, we also have that s2 ≡ q1
a1→ . . .

an→ qn for qi ∈ S2.
Following Definition 2 we have (si, qi) ∈ Q for 1 ≤ i ≤ n. However, according to

Definition 1, sn
u→ s′n for some s′n ∈ S1 as qn

u→ , leading to a contradiction. ut
As in Section 2, we have that P,R, S ∈ D denote the plant, the control require-
ments, and the supervisor, respectively. Again, the supervised plant is given by
P | S. Intuitively, controllability requires that the uncontrollable transitions of P
should be bisimilar to those of P | S, so that the reachable uncontrollable parts
of P and P | S are indistinguishable. The controllable transitions of the super-
vised plant may only be simulated by the ones of the original plant, since some
controllable transitions are suppressed by the supervisor. Then, we have that R
is controllable, if R �U P . For nonblocking behavior, we still need to ascertain
that L(R) ⊆ Lm(P ). In case the behavior defined by the control requirements
cannot be achieved, then we have that P | S �U P and P | S �∅ R for some
supervisor S. Note that P | S↔∅ S, i.e., the achievable behavior is identified by
the supervisor [3, 9]. Also, note that for deterministic systems this is equivalent
to P | S ↔B S for every B ∈ A [5]. Finally, if M is the maximally permissive
supervisor for P and R, then S �∅M for every other supervisor S of P .

Next, we employ this approach to directly manipulate plant and control
requirement components, without having to unravel their recognized languages.

5 Partially-Supervised Plants

We assume that, as in Section 3, the plant and the control requirements are
given as sets of parallel synchronizing components and restrictions, respectively.
The following theorem states when it is possible to embed a control require-
ment component in the definition of the plant, without affecting the supervised
behavior of the plant.



Theorem 1. Let P,R,X, S, T ∈ D such that P | X �U P , S is the maximally
permissive supervisor for P with respect to R | X, and T is the maximally
permissive supervisor for P | X with respect to R. Then S↔∅ T | X.

Proof. As S and T are a supervisors for P and P | X, respectively, we have that

P | S �U P and (P | X) | T �U (P | X).

From the assumptions, we have P | X �U P . Thus,

(P | X) | T ↔U P | (T | X)�U P | X �U P,

implying that T | X is a supervisor for P . As S is the maximally permissive
supervisor for P , we have that T | X �∅ S. On the other hand, from P | S �U P
we derive that

(P | S) | X ↔U (P | X) | S �U P | X
implying that S is a supervisor for P | X. As T is the maximally permissive
supervisor for P | X, we have that S �∅ T . We show that T �∅ T | X, which
implies that S↔∅ T | X. Using that (P | X) | T ↔∅ T , since T is a supervisor
for P | X, we derive:

(P | X) | T �∅ P | X implies
((P | X) | T ) | (T | X)�∅ (P | X) | (T | X) implies
(P | (X | X)) | (T | T )�∅ ((P | X) | T ) | X implies
(P | X) | T �∅ ((P | X) | T ) | X) implies
T �∅ T | X.

As S↔∅ T | X, we conclude that S and T deliver the same supervised behavior
for P and P | X with respect to R | X and R, respectively. We validate that the
requirements are satisfied accordingly. We have the following derivation:

(P | X) | T �∅ R implies
((P | X) | T ) | X �∅ R | X implies
(P | (X | X)) | T �∅ R | X implies
(P | X) | T �∅ R | X implies
P | (T | X)�∅ R | X,

i.e., T | X satisfies the control requirements for P . Also, we derive:

(P | X) | T ↔∅ (P | (X | X)) | T ↔∅ (P | X) | (T | X)↔∅ (P | X) | S �∅ R,

implying that the requirements are satisfied for both supervisors.
Finally, we show that the marked behavior of P | S and (P | X) | T is

equivalent, i.e., Lm(P | S) = Lm((P | X) | T ). First, note that for every
P1, P2 ∈ D, if t ∈ Lm(P1 | P2), then t ∈ Lm(P1) and t ∈ Lm(P2). Suppose that
t ∈ Lm(P | S), implying that t ∈ Lm(P ) and t ∈ Lm(S). Then, by Proposition 1,
t ∈ Lm(R | X) and, thus, t ∈ Lm(R) and t ∈ Lm(X). Now, it is not difficult to
observe that t ∈ Lm(P | T | X), as S↔∅T | X. The other direction is analogous,
which completes the proof. ut



Using the result of Theorem 1 we can define the notion of partially-supervised
plants as specifications that embed a portion of the control requirements in them.
Such practice removes trivial and intuitive control requirements that require
duplication of information and increase both the readability and meaningfulness
of both the plant and control requirements.

The essential requirement of Theorem 1 is that P | X �U P must hold.
However, such a requirement may prove difficult to check. We note that it is not
necessary to take the whole plant into account, but it is sufficient to prove the
claim for a portion of it. To show this, assume that P ↔A P1 | P2 and X is such
that P1 | X �U P1. Then, according to Proposition 1, (P1 | X) | P2 �U P1 | P2

holds as well, implying that P | X �U P . Next, we characterize two cases that
can be easily checked by visual inspection.

Let E ∈ D represent a totally unrestricted behavior given by
E = ({sE},A,→E , sE , {sE}), where sE

a→sE for every a ∈ A. Then, P | E↔AP
for every P ∈ D. Now, if X�U E, then X is a suitable control requirement com-
ponent for embedding. Visually, one needs only to verify that X does not disable
any uncontrollable events in its alphabet.

A typical situation arises when the control requirements need to restrict
the occurrence of controllable self loops as shown in Section 3. This requires
a duplication of the plant component, while selectively adding transitions with
controllable self-loop events (if not already present in the alphabet of the au-
tomaton at hand) and/or restricting their occurrences as desired, compare, e.g.,
Fig. 3 and Fig. 4. We show that in that case the control requirement component
can be taken as a plant component.

Let P | K be the plant, with K = (SK ,AK ,→K , sK ,SmK ) a plant component.
Let L = (SK ,AL,→L, sK ,SmK ) be a control requirement corresponding to this
component with AL = AK ∪C, where C ⊆ C \AK and →L =→K ∪{(s, c, s′) ∈
SK × C × SK | s = s′}. Augment the transition relation of K with self loops of
events in C for every state in SK given by U = {(s, c, s) | s ∈ SK , c ∈ C}. Denote
the augmented automaton as K ′. It is straightforward that P | K↔AP | K ′, cf.
Section 2. Moreover, it is easy to see that L | K ′ �U K ′, so that we can replace
the updated plant component K ′ by L, as shown above for P1 and X.

Using the results above, we can now adapt the specifications of the plant
and the control requirements given in Section 3. First, we directly replace the
plant components of Fig. 3, Fig. 5, and Fig. 7 with their corresponding control
requirements of Fig. 4, Fig. 6, and Fig. 8. These control requirements restrict
controllable self-loop events, so we can safely omit them, following the above
analysis. Thus, we are eliminating duplication of information without losing es-
sential behavior as the plant specification leaves the control loops for the sake of
being consistent with the paradigm of supervisory control theory. As directly wit-
nessed, this leads to unnecessary complication, whereas the partially-supervised
plant behavior as given by Fig. 4, Fig. 6, and Fig. 8 is intuitive and would be
directly modeled by modelers with insight to the matter at hand.

This leaves us only with the control requirements regarding the safety of
movement, depicted in Fig. 10, which can be considered as the only “meaning-
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Fig. 11. Embedding the behavior of the clutch in the actuator-sensor relation.

ful” set of control requirements. Here, we embed the requirement regarding the
behavior of the clutch, i.e., “Safety manual movement restriction” of Fig. 10,
with the plant component describing actuator-sensor relationship of Fig. 9. The
result of such an embedding is depicted in Fig. 11, which clearly shows the rela-
tion between the horizontal actuators and sensors. Namely, the horizontal motor
must be stopped in order to allow manual operation and in that case every sen-
sor event is possible. In case the patient support system is in motorized mode,
i.e., the clutch is applied, the sensor events can only occur consistently with the
horizontal movement of the table. This behavior cannot be easily deduced from
the “crowded” plant component depicted in Fig. 9, so the analysis reveals clearly
the intended behavior of the system.

We conclude that partially-supervised plants contribute to clarity and mean-
ingfulness of supervisory control specifications, when they are employed to elimi-
nate trivial and cluttered control requirements. We also demonstrated that they
can help better understand the underlying behavior. However, we must warn
that ad-hoc modeling should not replace supervisory control, i.e., the conditions
of Theorem 1 must be verified before applying the method presented in this sec-
tion. Furthermore, checking that the preconditions of the theorem hold, actually
amounts to supervisory control synthesis in some cases. For that purpose, we
characterized two simple instances of the Theorem 1, that are often found and
applied in practice without formalizing the underlying process of thought.

6 Concluding Remarks

We introduced the notion of partially-supervised plants that embed control re-
quirements in their components. The main motivator for such an embedding is
that by strictly following the principles of supervisory control, we sometimes end
up with cluttered and “redundant” plant components and control requirements.
Moreover, we noticed that embedding of control requirements actually occurs ad
hoc during the modeling of the plant. We have shown under which conditions
this embedding is safe and does not alter the supervised behavior of the plant.



We also gave a simple characterization, which can be verified visually, of the two
most intuitive and most applied situations. We have demonstrated the new con-
cept in an industrial study involving supervision of a patient support system for
an MRI scanner. We have shown that there is considerable improvement of the
readability and the meaningfulness of the specifications of the plant and control
requirements.

To show that the embedding of the control requirements does not alter the
supervised behavior of the plant, we employed a process-theoretic approach that
captures the notion of controllability by means of a behavioral preorder. The pre-
order, termed partial bisimilarity, has been adapted for deterministic automata
as employed in standard supervisory control. By analyzing the proof of the main
theorem, one also observes the ease of manipulation with the underlying notions,
which further validates our approach to supervisory control theory.

As future work, we intend to deepen our understanding of nondeterministic
partially-controlled plants, as there does not exist a unique maximally permissive
supervisor. We will also investigate state-based supervisory control, where the
control requirements refer to states, instead of supplying traces of events.
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