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Abstract Several techniques exist for index reduction and consistent initialization of higher index DAEs. Many
such techniques change the original set of equations by differentiation, substitution, and/or introduction of new
variables. This paper introduces substitute equations as a new language element. By means of a substitute equation,
the value of a continuous variable or its time derivative can be specified by an expression. This expression is evaluated
each time that the variable or its time derivative, respectively, is referenced in the model. The advantage of substitute
equations is that they enable index reduction and consistent initialization of higher index DAEs without changing
the original equations; no existing variables are removed and no new variables are introduced. Substitute equations
can also be used to enable the use of general purpose numerical solvers for equations where one or more of the
unknowns are discontinuous.

Differential algebraic equations

Many current equation based simulation languages use Differential Algebraic Equations (DAEs) to describe the
continuous behaviour of the modelled physical system. DAEs are a set of differential equations with additional
algebraic constraints in the form

f (ẋ, x, y, t) = 0, (1)

wherex ∈ IRn is the vector ofdifferential variables, y ∈ IRm is the vector ofalgebraic variables, t ∈ IR is the
independent variable andf ∈ IR2n+m+1→ IRn+m is the set of DAEs.

In DAEs, not all variables can be freely initialized. The initial values of variablesx, ẋ and y, denoted by
x(0), ẋ(0), y(0), must satisfy equation (1) at time 0:

f (ẋ(0), x(0), y(0), 0) = 0. (2)

In DAEs, in many cases, only the differential variables (x(0)) are initialized. The initial values of the algebraic
variables (y(0)) and of the time derivatives of the differential variables (ẋ(0)) are then calculated from (2).

DAEs are characterized by their (differential)index [5]. The index of equation (1) ism, if m is the smallest
number such that the system of equations

f (ẋ, x, y, t) = 0,

df (ẋ, x, y, t)

dt
= 0,

... (3)

d(m)f (ẋ, x, y, t)

d(m)t
= 0,

can be transformed into an explicit ODE (ẋ = g(x, t)) by algebraic manipulations. In general, the higher the index,
the greater the numerical difficulty one is going to encounter when trying to solve the system numerically. For
higher index DAEs(systems, with index greater than 1) there is no general purpose stable algorithm. A common
feature of higher index DAEs is that there are hidden constraints in the DAEs. These are equations that further
restrict the initialization of equation (1). Hidden constraints can be obtained after differentiation and algebraic
manipulations [8]. The presence of hidden constraints mean that not all differential variables may be chosen freely;
there are dependencies among differential variables. This can be seen, if equations in the form

g(x, u, t) = 0 (4a)

u = h(t) (4b)

are present in equation (1), or can be obtained after differentiations. The differential variables in (4a) aredependent
differential variables. In fact, hidden constraints may be present in index 1 systems of DAEs too.



It is well known, that the mathematical models of several physical systems have a high differential index. The
usual technique is that through differentiation and algebraic manipulations, the index is lowered to 0 or 1, and
the resulting system is solved with available ODE or DAE solvers. In the literature, several algorithms can be
found for index reduction. From these, the algorithm of Gear and Petzold [6], the constraint stabilization technique
of Gear [5], and the algorithm of Bachmann et al. [1] all differentiate (parts of) the system of equations and use
substitution. The algorithm of Pantelides [8] to reveal hidden constraints in DAEs, can also be used for index
reduction. Furthermore, Mattsson describes an index reduction technique in [7], which uses dummy algebraic
variables.

There are simulators, where (some of) the above mentioned index reduction techniques are implemented. After
the model of a physical system has been specified, the equations are analyzed symbolically and the index is reduced
by subsequent steps of differentiations and algebraic manipulations (substitution). In this way, the equations are
changed. Different ways of index reduction may thus lead to different sets of variables that can be initialized. This
may lead to a modelling problem. Since not all differential variables may be freely chosen in such a system, it must
be clear for the modeller which ones may be initialized, and which ones are calculated from the equations. Even
more, the modeller may want to choose himself the dependent differential variables that he wants to initialize.

In those simulators, where index reduction is not implemented, only low index systems (index 0 or 1) of
equations may be entered. Therefore, the modeller has to perform index reduction, and has to re-formulate the
system of equations. In this case, a new equation set is obtained that is usually less expressive than the original
one. Also, variables may be eliminated from the equations due to index reduction. Therefore, each time the values
of these variables are needed in the model, they must be re-calculated. This also reduces the readability of models.

To overcome the problems of the two approaches, in theχ language [10, 4] substitute equations are used.

Substitute equations

In the χ language, substitution can be specified explicitly by means ofsubstitute equationsin two forms. The
simple form is

S ::= v← E | v′ ← E

E ::= e

whereS andE are nonterminals,v is a continuous variable,v′ is the time derivative of a continuous variable ande

is a numerical expression. This specification is equivalent to replacing all occurrences ofv (v′) by e in the model.
The guarded form is

E ::= [ b1 −→ e1 [] . . . [] bn −→ en]
wherebi is a boolean guard andei is a numerical expression (i = 1 . . . n). In this case, variablev (v′) is substituted
dynamically, depending on the values of the guards. Ifbi is true, variablev (v′) is substituted byei . If more guards
are true at the same time, one alternative is chosen nondeterministically and all occurrences ofv (v′) are calculated
from this alternative.

All variables occurring in the right-hand-side of substitute equations (in expressionse, ei andbi, i = 1 . . . n)
must be well-defined, either by another substitute equation or by normal, non-substitute equations. Substitute
equations are evaluated recursively; if a substituted variable occurs on the right-hand-side of a substitute equation,
first, its value is re-calculated by substitution. Therefore, substitute equations can be specified in arbitrary order;
the only requirement is that they may not contain circular dependencies. Variables defined in this way may not be
assigned.

Substitution facilitates index reduction; it can also be used to reveal hidden constraints in index 1 DAEs and to
model discontinuities. This is illustrated below.

Index reduction

As an example for a higher index DAE, take the following PID (proportional integral differential) controller. A
horizontal forceF is applied to a body of massm on a flat surface, without friction. The position of the body is
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denoted byx. The control objective is to keep the body at a given positionxset . The unknowns arex, v, i, e, u.
VariableF is an input variable (depending only on time),xset , m, kP , kD andkI are constants.

ẋ = v (5a)

v̇ = F − u

m
(5b)

i̇ = e (5c)

e = x − xset (5d)

u = kP e + kDė + kI i (5e)

This is an index 2 system of DAEs. Differentiation of equation (5d) yields

ė = ẋ. (6)

After differentiating equations (5a, 5e), and differentiating equation (6) a second time, and then substituting in
u̇ = kP ė + kDë + kI i̇: v for ė, F−u

m
for ë (ë = ẍ = v̇ = F−u

m
), andx − xset for i̇; the ODE form can be obtained.

Typically to higher index systems, equations (5) contain a hidden constraint: equation (6) must hold at time 0.
This is becausee andx are dependent differential variables, as can be seen from (5d). Therefore, only one of them
can be initialized freely. Index reduction algorithms differ in the way they choose the variables to substitute. By
choosing (5d) for differentiation anḋe for substitution, the system is specified inχ as follows

x′ = v

, v′ = (F − u)/m

, e = x − xset

, i′ = e

, u = kP e + kDe′ + kI i.

, e′ ← x′

Variable e is a so-calledprime substituted differential variable. Variables of these category cannot be freely
initialized. In this model,x can be freely initialized, but the value ofe depends onx. The actual set of equations
solved by numerical solvers obtained after substitution is

ẋ = v (7a)

v̇ = F − u

m
(7b)

e = x − xset (7c)

i̇ = e (7d)

u = kP e + kDẋ + kI i. (7e)

Note that for the solvers,̇e is not present in the equations,e is thus an algebraic variable.
The advantage of using substitute equations is that the process of substitution is transparent; the original form

of the equations is preserved and the additional information used (ė = ẋ) is made explicit. Also, references to
the substituted variable in the discrete-event part of the model need not be altered; variablee is by definition a
differential variable, and its time derivative can be referenced in any discrete statement.

The index of the example system of equations (5) can also be reduced by removing variablee from the equations.
In this case, bothe andė are calculated by substitution. Theχ specification of the equations is as follows

x′ = v

, v′ = (F − u)/m

, i′ = e

, u = kP e + kDe′ + kI i.

, e ← x − xset

, e′ ← x′

In this case, variablee is a so-calleddifferential base-prime substitutedvariable. Wherevere and ė occur in the
model they are substituted by the right-hand-side expressions of the respective substitute equations. The equation
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set actually solved by numerical solvers obtained by substitution is

ẋ = v

v̇ = F − u

m

i̇ = x − xset

u = kP (x − xset )+ kDẋ + kI i.

Variablee has disappeared from the actual equations. What is left are four equations in four unknowns. This
is an index 1 problem. Again, in thisχ specification only the value ofx can freely be chosen, after whiche is
automatically initialized tox − xset via substitution. Also, the value ofė is set automatically tȯx.

Consistent initialization of index 1 systems

In the previous two approaches, the problems of higher index DAEs and hidden constraints in the equations have
been solved simultaneously. In this section, the situation is addressed where only the problem of a hidden constraint
is present. This is the case when the system of DAEs is of index 1 and there are dependent differential variables.
Again, the solution is substitution.

The index of the PID controller example can also be reduced if variableu is replaced by a derivative of a dummy
variablez. The set of equations now is

ẋ = v (8a)

v̇ = F − ż

m
(8b)

e = x − xset (8c)

i̇ = e (8d)

ż = kP e + kDė + kI i. (8e)

This is an index 1 problem, because after differentiating equation (8c), the equations can be re-arranged into an ODE.
Yet, e andx remain dependent differential variables so that they cannot be freely initialized. As a consequence,
there is a hidden constraint in equation (8c), which appears after differentiation of the equation. The initialization
problem can easily be solved inχ as before, by adding a substitution equation forė (or for bothe andė).

Modelling discontinuities

Another application area for substitute equations is the modelling of discontinuous functions. General purpose DAE
and ODE solvers cannot usually integrate discontinuous functions [2]. The usual approach is that discontinuities
are specified by so calledswitching functions. When the sign of the switching function changes, a discontinuity
occurs. Integration stops, and is re-started again after the discontinuity. For more on numerical methods with
respect to discontinuities we refer to [3].

A discontinuity in a variable that is used by the solver can be avoided in cases where the discontinuous variable
can be expressed in a closed form. This variable can then be calculated by substitution, and thereby, it is removed
from the equation set that is actually solved by numerical solvers. As an example, consider a tank described in [9],
where overflow occurs if the levelh of its contents reaches a maximum heighthmax. The incoming and outgoing
flows are denoted byQi andQo, respectively; the area of the tank byA, and the overflow byQx . The system
described by a conditional equation is

[ h < hmax ∨Qi < Qo −→ Ah′ = Qi −Qo, Qx = 0
[] h ≥ hmax ∧Qi ≥ Qo −→ Ah′ = 0, Qx = Qi −Qo

]
The general form of a conditional equation is:[ b1 −→ DAEs1 [] . . . [] bn −→ DAEsn ], whereDAEsi (1≤ i ≤ n)
represents one or more DAEs separated by commas. Boolean expressionbi denotes a guard. At any time, (at least)
one of these guards must be open (true), so that the DAE(s) associated with the open guard (after the arrow of the
open guard) is (are) activated. The discontinuous variableQx can be removed from the equations by substitution
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Ah′ = Qi −Qo −Qx

, Qx← [ h < hmax ∨Qi < Qo −→ 0
[] h ≥ hmax ∧Qi ≥ Qo −→ Qi −Qo

]
In this case, only the first equation,Ah′ = Qi −Qo −Qx is solved by integration. The fact that variableh has a
discontinuous first derivative is usually not a problem for numerical integrators.

Conclusions

Substitute equations make the mechanism of index reduction transparent to users. The original equation set is
unchanged, so that substituted variables do not disappear from the model; they can still be used in discrete-event
statements. In this way, expressiveness of the models is preserved. Furthermore, the use of substitute equations
makes it clear which variables can be chosen freely, and which ones are calculated. Substitute equations can also be
used to reveal hidden constraints in index 1 DAEs. Finally, substitute equations enable the use of general purpose
numerical solvers for equations where an unknown variable is discontinuous and can be expressed in a closed form.
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