
Process algebra

J.C.M. Baeten1, D.A. van Beek2, J.E. Rooda2
1Department of Mathematics and Computer Science

2Department of Mechanical Engineering
Eindhoven University of Technology, P.O.Box 513

5600 MB Eindhoven, The Netherlands
{j.c.m.baeten,d.a.v.beek,j.e.rooda}@tue.nl

Abstract

Process algebra is the study of distributed or parallel systems by algebraic means. Originating
in computer science, process algebra has been extended in recent years to encompass not just
discrete-event systems, but also continuously evolving phenomena, resulting in so-called hybrid
process algebras. A hybrid process algebra can be used for the specification, simulation, control
and verification of embedded systems in combination with their environment, and for any dynamic
system in general. As the vehicle of our exposition, we use the hybrid process algebraχ (Chi). The
syntax and semantics ofχ are discussed, and it is explained how equational reasoningsimplifies
tool implementations for simulation and verification. A bottle filling line example is introduced to
illustrate system analysis by means of equational reasoning.

1 Introduction

1.1 Definition

Process algebra is the study of distributed or parallel systems by algebraic means. The word ‘pro-
cess’ here refers tobehaviorof a system. A system is anything showing behavior, such as the
execution of a software system, the actions of a machine or even the actions of a human being.
Behavior is the total of events, actions or evolutions that asystem can perform, the order in which
these can be executed and maybe other aspects of this execution such as timing, probabilities, or
continuous aspects. Always, the focus is on certain aspectsof behavior, disregarding other as-
pects, so an abstraction or idealization of the ‘real’ behavior is considered. Instead of considering
behavior, we may consider anobservationof behavior, where an action is the chosen unit of ob-
servation. As the origin of process algebra is in computer science, the actions are usually thought
to be discrete: occurrence is at some moment in time, and different actions are separated in time.
This is why a process is sometimes also called adiscrete-event system. Please note that this is a
less restrictive definition than e.g. (Cassandras and Lafortune 1999).

The word ‘algebra’ denotes that the approach in dealing withbehavior is algebraic and ax-
iomatic. That is, methods and techniques of universal algebra are used. A process algebra can
be defined as any mathematical structure satisfying the axioms given for the basic operators. A
process is an element of a process algebra. By using the axioms, we can performcalculations
with processes. Often, though, process algebra goes beyondthe strict bounds of universal algebra:
sometimes multiple sorts and/or binding of variables are used.

The simplest model of behavior is to see behavior as an input/output function. A value or input
is given at the beginning of the process, and at some moment there is a value as outcome or output.

1

This model was used to advantage as the simplest model of the behavior of a computer program
in computer science, from the start of the subject in the middle of the twentieth century. It was
instrumental in the development of (finite state)automata theory. In automata theory, a process
is modeled as an automaton. An automaton has a number ofstatesand a number oftransitions,
going from a state to a state. A transition denotes the execution of an (elementary) action, the
basic unit of behavior. Also, there is an initial state (sometimes, more than one) and a number of
final states. A behavior is a run, i.e. a path from initial state to final state. An important aspect
is when to consider two automata equal, expressed by a notionof equivalence. On automata,
the basic notion of equivalence is ‘language equivalence’,which considers equivalence in terms
of behavior, where a behavior is characterized by the set of executions from the initial state to a
final state. An algebra that allows equational reasoning about automata is the algebra of regular
expressions, see e.g. (Linz 2001).

Later on, this model was found to be lacking in several situations. Basically, what is missing
is the notion ofinteraction: during the execution from initial state to final state, a system may
interact with another system. This is needed in order to describe parallel or distributed systems, or
so-calledreactivesystems. When dealing with interacting systems, the phraseconcurrency theory
is used. Thus, concurrency theory is the theory of interacting, parallel and/or distributed systems.
When referring to process algebra, we usually consider it asan approach to concurrency theory, so
that a process algebra usually (but not necessarily) has an operator (function symbol) to put things
in parallel, called parallel composition.

Thus, a usable definition is that process algebra is the studyof the behavior of parallel or dis-
tributed systems by algebraic means. It offers means to describe orspecifysuch systems, and thus
it has means to specify parallel composition. Besides this,it can usually also specify alternative
composition (put things in a choice) and sequential composition (sequencing, put things one after
the other). Moreover, it is possible to reason about such systems using algebra, i.e. equational
reasoning. By means of this equational reasoning,verification becomes possible, i.e. it can be
established that a system satisfies a certain property.

What are these basic laws of process algebra? In this chapter, we do not present collections of
such laws explicitly. Rather, it is shown how calculations can proceed.

To repeat, it can be said that any mathematical structure with operators of the right number of
arguments satisfying the given basic laws is a process algebra. Often, these structures are formu-
lated in terms oftransition systems, where a transition system has a number of states (including
an initial state and a number of final states) and transitionsbetween them. The notion of equiva-
lence studied is usually not language equivalence. Prominent among the equivalences studied is
the notion ofbisimulation. Often, the study of transition systems, ways to define them and equiv-
alences on them are also considered part of process algebra,even in the case no equational theory
is present.

1.2 Calculation

One form of calculation is verification by means of automatedmethods (calledmodel checking,
see e.g. (Clarke, Grumberg, and Peled 2000)) that traverse all states of a transition system and
check that a certain property is true in each state. The drawback is that transition systems grow at
a rate exponential in the number of components (in fact, due to the presence of parameters, often
they become infinite). For instance, a system having 10 interacting components, each of which has
10 states, has a total number of 10 000 000 000 states. It is said that model checking techniques
suffer from thestate explosionproblem.

At the other end, reasoning can take place in logic, using a form of deduction. Also here,

2

progress is made, and manytheorem provingtools exist (Bundy 1999). The drawback here is that
finding a proof needs user assistance (as the general problemis undecidable), which requires a lot
of knowledge about the system.

Equational reasoning on the basis of an algebraic theory takes the middle ground. On the one
hand, the next step in the procedure is usually clear, since it is more rewriting than equational
reasoning. Therefore, automation can be done in a straightforward way. On the other hand, rep-
resentations are compact and allow the presence of parameters, so that an infinite set of instances
can be verified at the same time.

1.3 History

Process algebra started in the late seventies of the twentieth century. At that point, the only part
of concurrency theory that existed was the theory of Petri nets, as discussed in another chapter in
this volume.

The question was raised how to give semantics to programs containing a parallel composition
operator. It was found that this was difficult using the semantic methods used at that time. The
idea of a behavior as an input/output function needed to be abandoned. A program could still
be modeled as an automaton, but the notion of language equivalence was no longer appropriate.
This is because the interaction a process has between input and output influences the outcome,
disrupting functional behavior. Secondly, the notion ofglobal variables needed to be overcome.
Using global variables, a state of an automaton used as a model was given as a valuation of the
program variables, that is, a state was determined by the values of the variables. The independent
execution of parallel processes makes it difficult or impossible to determine the values of global
variables at a given moment. It turned out to be simpler to leteach process have its own local
variables, and to denote exchange of information explicitly.

After some preliminary work by others, three main process algebra theories were developed.
These are CCS (Calculus of Communicating Systems) by Robin Milner (Milner 1980; Milner
1989), CSP (Communicating Sequential Processes) by Tony Hoare (Hoare 1985), and ACP (Al-
gebra of Communicating Processes) by Jan Bergstra and Jan Willem Klop, see (Bergstra and Klop
1984; Baeten and Weijland 1990).

Comparing these best-known process algebras CCS, CSP and ACP, we can say there is a con-
siderable amount of work and applications realized in all three of them. In that sense, there seem
to be no fundamental differences between the theories with respect to the range of applications.
Historically, CCS was the first with a complete theory. Different from the other two, CSP makes
fewer distinctions between processes. More than the other two, ACP emphasizes the algebraic
aspect: there is an equational theory with a range of semantic models. Also, ACP has a more
general communication scheme: in CCS, communication is combined with abstraction, in CSP,
there is also a restricted communication scheme.

Over the years, other process algebras were developed, and many extensions were realized.
Most interesting for this volume is the extension to hybrid systems. The language we consider
in this chapter is most closely related to the ACP approach, as in this approach, there is the most
work and experience on hybrid extensions. For a taste of another approach, see (He 1994).

1.4 Hybrid process algebra

Process algebra started out in computer science, and is especially geared to describing discrete-
event systems such as computer programs and software systems. With the growing importance
of embedded systems, which are software systems that are integrated in the machine or device

3

that they control, it was considered to use process algebra also to model and reason about the
controlled physical environment of the software. However,specifications of physical systems
not only require discrete-event models (such as timed or untimed transition systems), but also
continuous-time models (such as differential algebraic equations (Kunkel and Mehrmann 2006)),
leading to hybrid models.

In recent years, several attempts were made to incorporate such aspects into process algebra. In
this chapter, we report on one of these, based on theχ language. Other hybrid process algebras are
HyPA (Cuijpers and Reniers 2005), process algebra for hybrid systems ACPsrt

hs (Bergstra and Mid-
delburg 2005), and theφ-Calculus (Rounds and Song 2003). The history of theχ formalism dates
back quite some time. It was originally mainly used as a modeling and simulation language for
discrete-event systems. The first simulator (Naumoski and Alberts 1998) was successfully applied
to a large number of industrial cases, such as integrated circuit manufacturing plants, breweries,
and process industry plants (Beek, van den Ham, and Rooda 2002). Later, the hybrid language
and simulator were developed (Fábián 1999; Beek and Rooda2000). Recently, theχ language
has been completely redesigned. The result is a hybrid process algebra with a formal semantics as
defined in (Beek, Man, Reniers, Rooda, and Schiffelers 2006). This chapter informally defines the
most important elements of the syntax and semantics of theχ process algebra. It also extends the
formal definitions of (Beek, Man, Reniers, Rooda, and Schiffelers 2006) with a more user friendly
syntax, including the specification of data types.

2 Syntax and informal semantics of theχ process algebra

In this section the syntax and informal semantics of theχ process algebra is first illustrated by
means of two examples: a controlled tank and an assembly lineexample. After this intuitive
explanation, the syntax and semantics are more precisely defined.

2.1 Controlled tank

Figure 1 shows a liquid storage tank with a volume controllerVC. The incoming flowQi is
controlled by means of a valven. The outgoing flow is given by equationQo =

√
V . The volume

controller maintains the volumeV of the liquid in the tank between 2 and 10. Theχ model of the
controlled tank is as follows:

model Tank() =
|[var n : nat = 0, cont V : real = 10, alg Qi, Qo : real

:: V̇ = Qi − Qo

‖ Qi = n · 5
‖ Qo =

√
V

‖ ∗(V ≤ 2 → n := 1; V ≥ 10 → n := 0)

]|

Figure 2 shows the result of a simulation of the model for 7 time units. Initially, the volume in the
tank equals 10, and the valve is closed (n = 0). The derivative of the volume equals the difference
between the incoming and outgoing flows (V̇ = Qi − Qo). The specification of the controller is
given by∗(V ≤ 2 → n := 1; V ≥ 10 → n := 0), where the loop statement∗(p) denotes the
infinite repetition of statementp. The guard operator ‘→ ’ is used to specify conditional execution
of a statement, by prefixing a condition (referred to as a guard) b to a statementp, which is written
as b → p. The sequential composition operator ‘;’ is used to specify sequential execution of

4

V

n Qi

Qo

VC

Figure 1: Controlled tank.

0

2

4

6

8

10

12

0 1 2 3 4 5 6

time

V
Qi
Qo

Figure 2: Simulation of the controlled tank.

components, and the parallel composition operator ‘‖’ is used to specify the parallel execution of
components. In the example, the equations and the controller are all executed in parallel.

Initially, the three equations are enabled and the guardV ≤ 2 is enabled. Since the value of
the guard is false initially (V equals 10), the assignmentn := 1 is disabled. The model executes
by doing a sequence of delays, which involve passing of time,and actions, which are executed
instantaneously, without passing of time. The model can do adelay of t time units when all
enabled statements can simultaneously do a delay oft . A guard that is false, allows arbitrary
delays until it becomes true (see Section 2.6.2), and equations allow a delay oft , when a solution
of the equations exists that defines the values of the variables as a function of time (on domain
[0, t]). At the end point of the delay(s),V equals 2, and the guard becomes true. The assignment
n := 1 is now enabled. The model can now no longer delay, since assignments cannot delay; an
assignment is a so called ‘non-delayable’ statement (see Section 2.3). The model can do an action
when any of the enabled statements can do an action. Assignments can do an action by executing
the assignment. Therefore, the model executes the assignment n := 1, which models opening of
the valve. The assignment causes the value of variableQi to immediately become 5, to satisfy the
equationQi = n · 5. This is referred to as the ‘consistent equation semantics’: equations must
be satisfied at all times. The value of the continuous variable V , however, is unchanged; only
algebraic variables are allowed to change, to satisfy equations, when other variables are assigned.
Execution of the assignmentn := 1 causes the assignment to be disabled, and the next statement
(V ≥ 10 → n := 0) to be enabled. The guardV ≥ 10 is false. Therefore, the model delays,
while solving the equations, until the guard becomes true (volume in the tank equals 10). Now
the assignmentn := 0 is executed, modeling closing of the valve. As a result, theassignment is
disabled, and the first statement (V ≤ 2 → n := 1) of the repetition is re-enabled.

The general form of aχ model is:

model id(Dm) = |[D :: p]|,

whereid is an identifier that represents the name of the model,Dm denotes the model parameters,
that are not present in the example; andD denotes the declaration of variables and/or channels
of the model. Channels are introduced in the assembly line example of Section 2.2. Finally,p
denotes a statement, also known as a process term. Notation|[D :: p]| is in fact a scope operator,
which is defined in Section 2.3, together with statementp. The following kinds of variable can be
declared inD:

5

• ‘Discrete’ variables, such as invar n : nat = 0. This declares a variablen with initial value
0. The name discrete is common in hybrid systems terminology, and refers to the fact that the
variable takes only a limited number of values when the modelis executed (in this case only
0 and 1). The value of a discrete variable remains constant when model time progresses. The
value, in principle, changes only by means of assignments (e.g.n := 1). Discrete variables can
be of type real, however.

• ‘Continuous’ variables, such as incont V : real = 10. Continuous variables are the only vari-
ables for which dotted variables (derivatives) can be used in models. Therefore, the declaration
cont V : real implies thatV and its dotted versioṅV , can both be used in the model. The values
of continuous variables may change according to a continuous function of time when model
time progresses. The values of continuous variables are further restricted by equations (or in
more general terms: delay predicates, defined in Section 2.5.2). The value of a continuous
variable can also be changed by means of an assignment.

• ‘Algebraic’ variables, such as inalg Qi, Qo : real. These variables behave in a similar way
as continuous variables. The differences are that algebraic variables may change according
to a discontinuous function of time, algebraic variables are not allowed to occur as dotted
variables, and algebraic variables do not have a memory: thevalue of an algebraic variable is
in principle determined by the enabled equations, and not byassignments (e.g.Qo =

√
V).

Finally, a predefined reserved global variabletime, which denotes the model time, exists. The
value of this variable is initially zero, and it is incremented byt whenever the model does a delay
of t .

2.2 Assembly line example

An assembly processA assembles three different parts that are supplied by three suppliersG.
The order in which the parts are supplied is unknown, but eachpart should be received by the
assembly process as soon as possible. When all three parts have been received, assembly may
start. Assembly takestA units of time. When the products have been assembled, they are sent to
an exit processE. Figure 3 shows the iconic model of the assembly line, which is modeled as a
discrete-event system. For theχ model of the assembly line, first two types are declared. The type

G

G A E

G

a

b

c

d

Figure 3: Iconic model of an assembly line.

‘part’, representing a part as a natural number, and the type‘assy’, representing an assembled unit
as a 3-tuple of parts:

type part = nat

, assy= (part, part, part)

6

Theχ model consists of parallel instantiations of the three generator processesG, the assembly
processA and the exit processE:

model AssemblyLine(val t0, t1, t2, tA : real) =
|[chan a, b, c : part, d : assy
:: G(a, 0, t0) ‖ G(b, 1, t1) ‖ G(c, 2, t2) ‖ A(a, b, c, d, tA) ‖ E(d)

]|

The channelsa, b, c, d are used for communication and synchronization between theparallel
processes. Each generatorG sends a partn everyt time units:

proc G(chan a! : part, val n : nat, t : real) = |[∗(1t ; a ! n)]|

The assembly process receives the parts by means of the parallel composition(a?x ‖ b?y ‖ c?z).
This ensures that each part is received as soon as possible. The parallel composition terminates
when all parts have been received.

proc A(chan a?, b?, c? : part, d! : assy, val t : real) =
|[var x, y, z : part
:: ∗((a ?x ‖ b?y ‖ c?z) ; 1t ; d !(x, y, z))

]|

The exit process is simply:

proc E(chan a? : assy) = |[var x : assy:: ∗(a ?x)]|

To understand the meaning of the model, the process instantiations can be replaced by their defini-
tions, as defined in (Beek, Man, Reniers, Rooda, and Schiffelers 2006), and the model parameters
can be replaced by their values. Thus, the model instantiation AssemblyLine(5, 6, 7, 2) can be
rewritten into the following equivalent form:

model AssemblyLine() =
|[chan a, b, c : part, d : assy
:: |[var n : nat = 0, t : real = 5 :: ∗(1t ; a ! n)]|
‖ |[var n : nat = 1, t : real = 6 :: ∗(1t ; b ! n)]|
‖ |[var n : nat = 2, t : real = 7 :: ∗(1t ; c ! n)]|
‖ |[var x, y, z : part, t : real = 2 :: ∗((a ?x ‖ b?y ‖ c?z) ; 1t ; d !(x, y, z))]|
‖ |[var x : assy:: ∗(d ?x)]|
]|

Initially, the first statements of the repetitions are enabled. The first statement of the repetition of
the assembly process is a parallel composition of three receive statements (a ?x ‖ b ? y ‖ c ?z).
Enabling a parallel composition enables its components. Therefore, initially the statements1t ,
1t , 1t , a ?x, b ? y, c ?z, andd ?x are enabled. Each of these statements can delay. A delay
statement1t behaves as a timer that can delay for at mostt time units. After this, the timer is
expired and can terminate by means of an action. The values ofthe three local variablest are 5,
6, and 7, respectively. Therefore, initially, a (maximum) delay of 5 time units is possible. After
this, the first timer terminates by means of an action, and thesend statementa ! n is enabled. The
enabled statements are nowa ! n, 1t , 1t , a ?x, b ?y, c ?z, d ?x, where the two timers modeled
by 1t and1t can delay for 1 and 2 remaining time units, respectively, before expiring. We now
have an enabled pair of a send and a receive statement on the same channel that are placed in

7

parallel: a ! n anda ?x. This pair can simultaneously do a send and a receive action,followed
by joint termination. The result is comparable to the (distributed) execution of the assignment
x := n, or x := 0, since the value of the first variablen is 0. After this, the send and receive
statements are disabled. Disabling ofa ! n enables the delay statement1t again. The enabled
statements are now:1t , 1t , 1t , b?y, c?z, d ?x, where the three timers need to delay for another
5, 1, and 2 time units, respectively, before expiring. Afterexpiration of the second and third
timer, communication of 1 via channelb and 2 via channelc takes place, respectively. Then, the
parallel composition terminates, enabling the delay statement1t of the assembly process. After
this intuitive explanation of theχ language by means of examples, the next sections more precisely
define the syntax and semantics.

2.3 Statement syntax

This section defines the syntax of a considerable and representative subset ofχ models using
a Backus-Naur (BNF) like notation. The symbol| defines choice, and notation{Z}∗ denotes a
sequence of zero or moreZ’s. Statements can be divided in two classes: the atomic statements,
that represent the smallest statement units; and the compound statements, that are constructed from
one or more (atomic) statements by means of operators. The syntax of the atomicχ statements, is
as follows:

patom ::= skip non-delayable action
| x := e non-delayable (multi-)assignment
| [skip] delayable action
| [x := e] delayable (multi-)assignment
| h ! e | h! delayable send
| h ?x | h? delayable receive
| 1d delay
| u delay predicate,

wherex ande denote comma separated variablesx1, . . . , xn and expressionse1, . . . , en, respec-
tively, for n ≥ 1, h denotes a channel, andd denotes an expression of type real. Delay predicate
u denotes a predicate over variables (including the variabletime) and dotted continuous variables
(derivatives). Delay predicates may occur in the form of differential algebraic equations, such as
ẋ = y, y = n, or in the form of a constraint or invariant, such asx ≥ 1.

The syntax of the compoundχ statements is as follows:

p ::= patom atomic
| p; p sequential composition
| b → p guard operator
| p 8 p alternative composition
| p ‖ p parallel composition
| ∗p loop statement

| b
∗→ p while statement

| |[D :: p]| variable and channel scope operator
| id(e) process instantiation
| pR recursion scope operator (see Sections 3.2 and 3.3),

where guardb denotes a predicate over variables. The operators are listed in descending order of
their binding strength as follows:{∗,

∗→ , → }, ; , {‖ , 8}. The operators inside the braces have

8

equal binding strength. Parentheses may be used to group statements. For example,x := 1; y :=
x 8 x := 2; y := 2x means(x := 1; y := x) 8 (x := 2; y := 2x). To avoid confusion, parenthesis
are obligatory when alternative composition and parallel composition are used together. E.g.p 8
q ‖ r is not allowed and should either be written as(p 8 q) ‖ r , or asp 8 (q ‖ r).

2.4 Semantic framework

In this chapter, the meaning (semantics) of aχ model is informally defined in terms of delay be-
havior and action behavior, based on the formal semantics aspresented in (Beek, Man, Reniers,
Rooda, and Schiffelers 2006). Delay behavior involves passing of time, where the semantics
defines for each variable how its value changes as a function of time. Action behavior is instanta-
neous: time does not progress, and the semantics defines for each variable the relation between its
value before and after the action.

Atomic statements can be disabled or enabled. Actions and delays are done byenabled atomic
statements, with one exception only: an enabled guarded statementb → p, with a guard that is
false can do any delay. Atomic statements terminate by doingan action. They never terminate by
doing a delay. A statement that terminates becomes disabledby doing so.

Compound statements combine (sub-)statements by means of operators. The operator de-
fines the relation between enabling, disabling and termination of the compound statement and its
sub-statements. Enabling or disabling a compound statement is defined in terms of enabling or
disabling its sub-statements. Enabling a compound statement implies enabling one or more of its
sub-statements. E.g. enabling a sequential compositionp1; . . . ; pn implies enabling the first state-
ment p1, whereas enabling a parallel compositionp1 ‖ . . . ‖ pn implies enabling all statements
p1 . . . pn.

Execution of aχ modelM, defined asmodel M(D0) = |[D1 :: p0]|, takes place by executing
a sequence of delays and actions in the following way:

• At the start, statementp0 is enabled.

• Any enabled skip statement or assignment statement (delayable or non-delayable) can do an
action.

• An enabled pair of a send and a receive statement on the same channel that are placed in
parallel can simultaneously do a send and a receive action, followed by joint termination.
The result, in terms of values of variables, is comparable tothe (distributed) execution of a
(multi)-assignment. E.g. execution of the communication action in h ! 1 ‖ h ?x is comparable
to execution of the assignmentx := 1.

• The model can do delays only when and for as long as:

– All enabled statements can delay. The delayable versions ofthe skip statement, assign-
ment, and send and receive statements can always delay (the non-delayable versions can
never delay). A delay statement1d can delay for as long as its internal timer is not ex-
pired (see Section 2.5.3), and the set of all enabled delay predicates can delay for as long
as they have a solution. Such a solution defines the values of the variables as a function
of time for the period of the delay.

Note that the set of enabled statements may change while delaying. The reason for this is
the guarded statementb → p, because the value of the guard can change while delaying,
due to changes in the values of continuous or algebraic variables used inb.

9

– No parallel pair of a send and a receive statement on the same channel is enabled or
becomes enabled. This is because, by default, channels inχ are urgent: communication
or synchronization cannot be postponed by delaying.

• When different actions and/or delays are possible, any of these can be chosen. This is referred
to as nondeterministic choice. Note that delays may always be shorter than the maximum
possible length.

The values of the discrete and continuous variables are stored in memory. The values of the
algebraic variables are not stored. This means that the starting point of the trajectory of a discrete
or continuous variable equals its last value stored in memory. The starting point of the trajectory
of an algebraic variables can be any value that is allowed by the enabled equations.

In models of physical systems, the delay behavior of the continuous and algebraic variables is
usually uniquely determined: there is usually only one solution of the set of enabled differential
algebraic equations. Multiple delays / solutions can be caused by under-specified systems of
equations, where there are less equations than variables, or by delay predicates that allow multiple
solutions, such as ‘true’ oṙx ∈ [0, 1].

The action behavior of the discrete, continuous and algebraic variables is as follows:

• The discrete and continuous variables do not change as a result of actions unless the change
is explicitly specified, for example by means of an assignment, or by receiving a value via a
channel.

• The algebraic variables can, in principle, change arbitrarily in actions. In most models, their
values are defined by equations.

2.5 Semantics of atomic statements

2.5.1 Skip and multi-assignment

An enabled skip statement can do an action, and then terminates. It corresponds to an assignment
x := x, because the values of continuous and discrete variables are left unchanged. The skip
statement can be used to make a choice in an alternative composition statement, because it executes
an action (see processTankin Section 3.2).

An enabledmulti-assignmentstatementxn := en for n ≥ 1 can do an action that changes the
values of the variablesx1, . . . , xn in one step to the values of expressionse1, . . . , en, respectively,
and then terminates. Forn = 1, this gives a normal assignmentx := e.

2.5.2 Delay predicate

An enableddelay predicate ucan perform delays but no actions. Delay predicates restrict the
allowed trajectories of the variables while delaying in such a way that at each time point during
the delay the delay predicate holds (its value must be true),when all variables and dotted variables
in the predicate are replaced by their current value.

Delay predicates also restrict the action behavior ofχ models, because the enabled delay
predicates must also hold before and after each action. In fact, the enabled delay predicates of aχ

model must hold at all times. This is referred to as the ‘consistent equation semantics’.

The relation between the trajectory of a continuous variable x and the trajectory of its
‘derivative’ ẋ is given by the Caratheodory solution concept:x(t) = x(0) +

∫ t
0 ẋ(s)ds. This

10

allows a non-smooth (but continuous) trajectory for a differential variablex in the case that
the trajectory of its ‘derivative’ẋ is non-smooth or even discontinuous, as in, for example,
model M() = |[cont x : real = 0 :: ẋ = step(time − 1)]|, where step(y) equals 0 fory ≤ 0
and 1 fory > 0.

2.5.3 Delay statement

A delay statement1d behaves as a timer that can be in three modes: reset, running or expired.
A timer that is in mode running keeps track of the remaining time texp before expiring. Initially,
timers are in mode reset. In modes reset and running, a timer can delay; in mode expired, it can
terminate by means of an action. If the timer is enabled, its behavior is as follows:

• In mode reset, when the valuec of expressiond is bigger than zero, the timer can do a delayt
for t ≤ c. If t < c, the new mode after the delay is running withtexp = c − t . If t = c, the new
mode is expired.

• In mode running, the timer can do a delayt ≤ texp to mode running (t < texp) or expired
(t = texp). It switches to mode reset when it is disabled as a result of achoice being made in
an alternative composition (see Section 2.6.3).

E.g. in x := 0; ∗(13 8 ẋ = 1 8 x ≥ 1 → x := 0), when the delay statement / timer13
becomes running, it switches to mode reset after 1 time unit,because of execution of the
(second, guarded) assignmentx := 0, which enforces a choice in the alternative composition
and disables the timer.

• In mode expired, or in mode reset when the valuec of expressiond equals zero, the timer can
do an action, accompanied by termination to mode reset. It also switches to mode reset when
it is disabled as a result of a choice being made in an alternative composition.

The mode of a timer remains unchanged when it is disabled as a result of the value of a guard
becoming false. E.g. in sin(2πtime) ≥ 0 → 11, the timer expires after two time units, that is after
two periods of the sine function, because the timer only delays when the sine function is positive.
As a final example, consider∗(h ?d; 1d) ‖ ∗(h ! 1; h ! 2). The first delay of the timer is 1, the
second delay is 2, and then the cycle is repeated.

2.6 Semantics of compound statements

2.6.1 Sequential composition

In asequential composition p1; . . . ; pn (n ≥ 1), only one statementpi , 1≤ i ≤ n, can be enabled at
the same time. Enabling a sequential compositionp1; . . . ; pn implies enabling its first statement
p1. When statementpi (1 ≤ i ≤ n − 1) terminates (and is therefore also disabled), the next
statementpi+1 becomes enabled. The sequential composition terminates upon termination of its
last statementpn.

2.6.2 Guard operator

Enabling of a guarded statement enables its guardb. Behavior of a guarded statementb → p
depends on the value of the guardb:

11

• Statementp is enabled while the guard is enabled and the value of the guard is true. Execution
of the firstactionby p disables the guard. Thus, after this first action, the value of the guard
becomes irrelevant.

• Statementp is disabled while the value of the guard is false. The guardedstatementb → p
can, in principle, do any delay while the guard is enabled andits value is false; only at the start
point and end point of such a delay, the value of the guard may be true.

When a guarded statement occurs in parallel with another statement, as inq ‖ b → p, the value
of the guard can change due to actions of statementq, which may cause statementp to change
from being disabled to enabled or vice versa. E.g.b := false; (11; b := true‖ b → skip).

When inq ‖ b → p, the guardb contains continuous or algebraic variables, andq contains
one or more enabled delay predicates, the value of the guard may change during a delay, causing
statementp to change from being disabled to enabled or vice versa. E.g.ẋ = 1 ‖ x ≥ 1 → x := 0.

2.6.3 Alternative composition

Enablingp1 8 . . . 8 pn enables the statementsp1, . . . , pn. Execution of an action by any one of
the statementsp1 . . . pn disables the other statements. In this way, execution of thefirst action
makes a choice. When one of the statementsp1, . . . , pn terminates, the alternative composition
p1 8 . . . 8 pn also terminates.

2.6.4 Parallelism

Enabling p1 ‖ . . . ‖ pn enables the statementsp1, . . . , pn. When a statementpi , 1 ≤ i ≤ n,
executes an action, the other statements remain enabled. The parallel compositionp1 ‖ . . . ‖ pn

terminates when the statementsp1, . . . , pn have all terminated.

Informally, we often refer to the statementsp1, . . . , pn occurring inp1 ‖ . . . ‖ pn as parallel
processes. Parallel processes interact by means of shared variables or by means of synchronous
point-to-point communication or synchronization via a channel. Communication inχ is the send-
ing of values of one or more expressions by one parallel process via a channel to another parallel
process, where the received values are stored in variables.In case no values are sent and received,
we refer to synchronization instead of communication.

2.6.5 Loop and while statement

Loop statement∗p represents the infinite repetition of statementp. When∗p is enabled,p is
enabled. Termination ofp results in re-enabling ofp.

The while statementb
∗→ p can be interpreted as “whileb do p”. Enabling ofb

∗→ p when
b is true enablesp (by means of an action), and enabling ofb

∗→ p whenb is false, leads to
termination of the while statement (by means of an action).

2.6.6 Variable and channel scope operator

A variable and channel scope operator may introduce new variables and new channels. Enabling of
a variable and channel scope statement|[D :: p]|, where the local declaration partD introduces
new variables and/or channels (see Sections 2.1 and 2.2), performs the variable initializations
specified inD and enables statementp. Termination ofp terminates the scope statement|[D :: p]|.
Any occurrence of a variable or channel inp that is declared inD refers to that local variable or

12

channel and not to any more global declaration of the variable or channel with the same name, if
such a more global declaration should exist.

3 Algebraic reasoning and verification

3.1 Introduction

Theχ process algebra has strong support for modular compositionby allowing unrestricted com-
bination of operators such as sequential and parallel composition, by providing statements for
scoping, by providing process definition and instantiation, and by providing different interaction
mechanisms, namely synchronous communication and shared variables.

The fact that theχ language is a process algebra with a wide range of statementspotentially
complicates the development of tools forχ , since the implementations have to deal with all pos-
sible combinations of theχ atomic statements and the operators that are defined on them.This is
where the process algebraic approach of equational reasoning, that allows rewriting models to a
simpler form, is essential.

To illustrate the required implementation efforts, consider the following implementations that
are developed: a Python implementation for rapid prototyping; a C implementation for fast model
execution; and an implementation based on the MATLAB Simulink S-functions (The MathWorks,
Inc 2005), where aχ model is translated to an S-function block. Furthermore, there is an imple-
mentation for real-time control (Hofkamp 2001). In (Bortnik, Trčka, Wijs, Luttik, van de Mortel-
Fronczak, Baeten, Fokkink, and Rooda 2005) it has been shownthat different model checkers
each have their own strengths and weaknesses. Therefore, for verification, translations to several
tools are defined. In particular, for hybrid models a translation to the hybrid I/O automaton based
PHAver (Frehse 2005) model checker is defined. For timed models the following translations are
defined: (1) a translation to the action-based process algebra µCRL (Groote 1997), used as input
language for the verification tool CADP (Fernandez, Garavel, Kerbrat, Mounier, Mateescu, and
Sighireanu 1996); (2) a translation to PROMELA, a state-based, imperative language, used as in-
put language for the verification tool SPIN (Holzmann 2003);and (3) a translation to the timed
automaton based input language of the UPPAAL (Larsen, Pettersson, and Yi 1997) verification
tool. In future, for verification of hybrid models, additional translations may be considered to
tools such as HYTECH (Alur, Henzinger, and Ho 1996), or one of the many other hybrid model
checkers.

Instead of defining the implementations mentioned above on the full χ language as defined in
Section 2.3, the process algebraic approach of equational reasoning makes it possible to transform
χ models in a series of steps to a (much simpler) normal form, and to define the implementations
on the normal form. The originalχ model and its normal form are bisimilar, which ensures that
relevant model properties are preserved. The normal form has strong syntactical restrictions, no
parallel composition operator, and is quite similar to a hybrid automaton. Currently, correctness
proofs are developed, and in the near future, implementations will be redesigned based on the
normal form.

The steps to the normal form are as follows. First of all, the process instantiations are elimi-
nated, by replacing them by their defining bodies, and replacing the formal parameters by actual
arguments. Next, parallel composition is eliminated by using laws of process algebra, in particular
a so-calledexpansion law(not given here). An example of a process algebra law inχ specifying
that the guard distributes over alternative composition isb → (p 8 q) = b → p 8 b → q. Finally,
the normal form may be simplified further, taking advantage of the fact that it no longer contains
parallel composition. Note that it is possible to constructmodels for which the normal form can-

13

not be (easily) generated. These exceptions are not discussed in this chapter, since they do not
restrict translation to the normal form for practical purposes. For a definition of the normal form
see Section 3.5.

3.2 Bottle filling line example

Figure 4 shows a bottle filling line, based on (Baeten and Middelburg 2002), consisting of a storage
tank that is continuously filled with a flowQin, a conveyor belt that supplies empty bottles, and a
valve that is opened when an empty bottle is below the filling nozzle, and is closed when the bottle
is full. When a bottle has been filled, the conveyor starts moving to put the next bottle under the
filling nozzle, which takes one unit of time. When the storagetank is not empty, the bottle filling
flow Q equalsQset. When the storage tank is empty, the bottle filling flow equalsthe flow Qin.
The system should operate in such a way that overflow of the tank does not occur. We assume
Qin < Qset.

VT

Q

VB

Qin

Figure 4: Filling Line.

Tank

Conveyor

open bQ close

Figure 5: Iconic model of the filling line.

Figure 5 shows an iconic representation of the model of the filling line. It consists of the
processesTankandConveyorthat interact by means of the channelsopenandclose, and shared
variable Q. The model is defined below. It has two parameters: the initial volume VT0 of the
storage tank, and the valueQin of the flow that is used to fill the storage tank. The constantsQset,
VTmax, andVBmax define the maximum value of the bottle filling flowQ, the maximum volume
of the storage tank, and the filling volume of the bottles, respectively. The modelFillingLine
consists of the algebraic variableQ, the channelsopenandclose, and the parallel composition of
the process instantiations for the tank and the conveyor.

const Qset : real = 3
, VTmax : real = 20
, VBmax : real = 10

model FillingLine(val VT0, Qin : real) =
|[alg Q : real, chan open, close: void
:: Tank(Q, open, close, VT0, Qin) ‖ Conveyor(Q, open, close)
]|

The tank process has a local continuous variableVT that is initialized toVT0. Its process body
is a recursion scope consisting of three modes: closed, opened, and openedempty that correspond

14

to the valve being closed, the valve being open, and the valvebeing open while the storage tank
is empty. The syntax and semantics of recursion scopes is defined in Section 3.3. In the mode
opened, the storage tank is usually not empty. When the storage tank is empty in mode opened,
the delayable skip statement[skip] may be executed causing the next mode to be openedempty.
Due to the consistent equation semantics, the skip statement can be executed only if the delay
predicate in the next mode openedempty holds. This means, among others, thatVT = 0 must hold.
Therefore, the transition to mode openedempty can be taken only when the storage tank is empty.
Note that the comma in delay predicates denotes conjunction. E.g. V̇T = Qin , Q = 0 means
V̇T = Qin ∧ Q = 0.

proc Tank(alg Q : real, chan open?, close? : void, val VT0, Qin : real) =
|[cont VT : real = VT0

:: |[mode closed=
(V̇T = Qin, Q = 0, VT ≤ VTmax 8 open?; opened)

, mode opened=
(V̇T = Qin − Q, Q = Qset, 0 ≤ VT ≤ VTmax

8 [skip]; openedempty
8 close?; closed
)

, mode openedempty=
(VT = 0, Q = Qin 8 close?; closed)

:: closed
]|

]|

ProcessConveyorsupplies an empty bottle in 1 unit of time (VB := 0; 11). Then it synchro-
nizes with the storage tank process by means of the send statementopen!, and it proceeds in mode
filling. When the bottle is filled in mode filling (VB ≥ VBmax), the process synchronizes with the
storage tank to close the valve and returns to mode moving. The initial mode is moving.

proc Conveyor(alg Q : real, chan open!, close! : void) =
|[cont VB : real = 0
:: |[mode moving= (VB := 0; 11; open!; filling)

, mode filling = (VB ≥ VBmax → close!; moving)

:: moving
]|

‖ V̇B = Q
]|

Figure 6 shows the results of the first 12 time units of a simulation run of the model
FillingLine(5, 1.5), that is with model parametersVT0 = 5 and Qin = 1.5. The graph shows
that the first bottle is filled from time point 1 until time point 1 + 10/3≈ 4.33. Filling of the
second bottle starts 1 time unit later, and somewhat after 7 time units, the storage tank becomes
empty, so that filling continues at the reduced flow rate.

3.3 Syntax and semantics of the recursion scope operator

The syntax of the recursion scope operator statementpR, that was introduced in Section 2.3, and
first used in Section 3.2 is defined as:

pR ::= |[mode X = p+ {,mode X = p+}∗ :: X]|,

15

0

2

4

6

8

10

12

14

0 2 4 6 8 10 12

time

VT
VB
Q

Figure 6: Simulation results of modelFillingLine.

whereX denotes a recursion variable, and statementsp+ consist of statementsp (see Section 2.3)
to which recursion variablesX are added:

p+ ::= p | p; X | p+ 8 p+ | b → p+ | p; p+

The syntax enforces any recursion variableX to occur only at the end of a sequential compo-
sition. An additional restriction is that each recursion scope operator must be ‘complete’. This
means that in

|[mode X1 = p+
1 , . . . ,mode Xn = p+

n :: Xk]|,

all occurrences of free recursion variables inp+
i (1 ≤ i ≤ n) must be defined in the recursion scope

operator itself. These restrictions enforce structured use of recursion: only one recursion variable
Xi with corresponding statementp+

i can be executed at the same time, and termination of any of
the statementspi terminates the scope operator itself. This structured use of recursion simplifies
analysis ofχ models, it simplifies the translation to the normal form as discussed in Section 3, and
it simplifies tool support forχ .

The meaning of recursion scope operators is as follows. Enabling the recursion scope operator
|[X1 = p+

1 , . . . , Xn = p+
n :: Xi]|, enables the statementXi (1 ≤ i ≤ n). When a recursion variable

X j (1 ≤ j ≤ n) is enabled (or disabled), its defining statementpi is enabled (or disabled) instead.
When a defining statementpj terminates, the recursion scope operator terminates.

3.4 Elimination of process instantiation

Elimination of the process instantiations for theTankandConveyorprocesses by replacing the pro-
cess instantiations by their definitions, as defined in (Beek, Man, Reniers, Rooda, and Schiffelers
2006), leads to the following model:

model FillingLine(val VT0, Qin : real) =
|[alg Q : real, chan open, close: void
:: |[cont VT : real = VL

T0
, var VL

T0 : real = VT0, QL
in : real = Qin

:: |[mode closed=
(V̇T = QL

in , Q = 0, VT ≤ VTmax 8 open?; opened)

16

, mode opened=
(V̇T = QL

in − Q, Q = Qset, 0 ≤ VT ≤ VTmax

8 [skip]; openedempty
8 close?; closed
)

, mode openedempty=
(VT = 0, Q = QL

in 8 close?; closed)

:: closed
]|

]|
‖ |[cont VB : real = 0

:: |[mode moving= (VB := 0; 11; open!; filling)

, mode filling = (VB ≥ VBmax → close!; moving)

:: moving
]|

‖ V̇B = Q
]|

]|

To avoid naming conflicts between the formal parametersVT0 and Qin declared in the process
definition for processTank, and the actual argumentsVT0 and Qin in the process instantiation
Tank(Q, open, close, VT0, Qin), the newly defined local discrete variables that are used to hold the
values of the last two parameters of the process instantiation, are renamed toVL

T0 andQL
in.

3.5 Syntax of the normal form

A slightly simplified syntax for the normal form inχ is given by a model with on the outer level
a global variable and channel declarationD (see Sections 2.1 and 2.2), on the inner level a local
variable and channel declarationD, and one recursion scope operator statement:

χnorm ::= model id(Dm) = |[D :: |[D :: |[X = pnorm {, X = pnorm}∗ :: X]|]|]|,

The normalized statementspnorm, used to define the recursion variablesX, may consist of un-
delayable normalized atomic statementspna (defined below). Such a normalized atomic statement
may be prefixed by a guardb, and/or it may be made delayable (e.g.b → pna and[pna]). Sequen-
tial composition is allowed only in the form of such (guarded, and/or delayable) atomic statements
followed by a recursion variable. Finally, all of these statements may be part of alternative com-
position:

pnorm ::= pnga (guarded) atomic action
| u delay predicate
| pnga; X atomic action followed by recursion variable
| pnorm 8 pnorm alternative composition,

where the normalized guarded atomic action statementspnga are defined by:

pnga ::= pna non-delayable atomic action statement
| b → pna guarded non-delayable atomic action statement
| [pna] delayable atomic action statement
| b → [pna] guarded delayable atomic action statement,

17

and the normalized atomic action statementspna, that are all non-delayable, are defined by:

pna ::= skip skip statement
| x := e multi-assignment
| h !? synchronization via channelh
| h !?x := e communication via channelh

The synchronization statementh !? and communication statementh !?x := eare required because
of the fact that there is no parallel composition in the normalized form. The parallel composition
h! ‖ h? is normalized toh !?, andh ! e ‖ h ?x is normalized toh !?x := e. The statementh !?
is comparable to the skip statement, and the statementh !?x := e is comparable to the multi-
assignment statementx := e. The effect on the values of the variables is the same. There is only
a small difference with respect to the occurrence of channelh, possibly accompanied by the value
of e, in the transition system.

As an example, that clarifies how the delay statement is eliminated in the translation to the
normal form, consider the statementx := 2; 11 which is first rewritten asx := 2; |[cont t :
real = 1 :: ṫ = −1 8 t ≤ 0 → skip]| and then normalized to

|[cont t : real

:: |[X0 = (x, t := 2, 1; X1)

, X1 = (ṫ = −1 8 t ≤ 0 → skip)

:: X0

]|
]|

The normal form makes it easy to analyze system behavior and it simplifies tool implementa-
tions in the following way. When a model is defined as

model M(val x : t) =
|[D0

:: |[D1

:: |[X1 = pnorm1, . . . , Xn = pnormn :: Xi]|
]|

]|,

M(c) defines a particular model instantiation. At each point of execution of this model instan-
tiation, exactly one recursion variableXi is enabled, so that the set of all possible next steps is
determined by the termpnormi only. In addition, the termpnormi defines for each action the re-
cursion variable (if any) that is enabled after execution ofthe action. Process definition, process
instantiation, parallel composition, send and receive statements, the loop statement, while do state-
ment, and delay statement are no longer present. Also scoping has been eliminated, apart from
one top level variable and channel scope operator, and one top level recursion scope operator.

3.6 Elimination of parallel composition

Elimination of parallel composition and translation to thenormal form as discussed in Section 3.5
leads to the model:

model FillingLine(val VT0, Qin : real) =
|[alg Q : real, chan open, close: void
:: |[cont VT : real = VL

T0, VB : real = 0

18

, cont t : real, var VL
T0 : real = VT0, QL

in : real = Qin

:: |[moving closed=
(V̇T = QL

in , Q = 0, VT ≤ VTmax, V̇B = Q
8 VB, t := 0, 1; moving0 closed
)

, moving0 closed=
(V̇T = QL

in , Q = 0, VT ≤ VTmax, V̇B = Q, ṫ = −1
8 t ≤ 0 → skip; moving1 closed
)

, moving1 closed=
(V̇T = QL

in , Q = 0, VT ≤ VTmax, V̇B = Q
8 open!?; filling opened
)

, filling opened=
(V̇T = QL

in − Q, Q = Qset, 0 ≤ VT ≤ VTmax, V̇B = Q
8 [skip]; filling openedempty
8 VB ≥ VBmax → close!?; moving closed
)

, filling openedempty=
(VT = 0, Q = QL

in, V̇B = Q
8 VB ≥ VBmax → close!?; moving closed
)

:: moving closed
]|

]|
]|

3.7 Substitution of constants and additional elimination

The model below is the result of substitution of the globallydefined constants by their values.
Furthermore, the discrete variablesQL

in andVL
T0, that were introduced by elimination of the process

instantiations, are eliminated. Also, the presence of the undelayable statementsVB, t := 0, 1
andopen!? in modes movingclosed and moving1 closed, respectively, allows elimination of the
differential equations in these modes.

Most hybrid automaton based model checkers, such as PHAver (Frehse 2005) and HYTECH

(Henzinger, Ho, and Wong-Toi 1995), do not (yet) have urgenttransitions that can be combined
with guards. Therefore, the urgency in the guarded statements is removed by making the state-
ments that are guarded delayable, and adding the closed negation of the guard as an additional
delay predicate (invariant). E.g.t ≤ 0 → skip is rewritten ast ≥ 0 8 t ≤ 0 → [skip].

model FillingLine(val VT0, Qin : real) =
|[alg Q : real, chan open, close: void
:: |[cont VT : real = VT0, VB : real = 0, t : real

:: |[moving closed=
(VT ≤ 20, Q = 0
8 VB, t := 0, 1; moving0 closed
)

, moving0 closed=
(V̇T = Qin , Q = 0, VT ≤ 20, V̇B = 0, ṫ = −1, t ≥ 0

19

8 t ≤ 0 → [skip]; moving1 closed
)

, moving1 closed=
(VT ≤ 20, Q = 0
8 open!?; filling opened
)

, filling opened=
(V̇T = Qin − 3, Q = 3, 0 ≤ VT ≤ 20, V̇B = 3, VB ≤ 10
8 [skip]; filling openedempty
8 VB ≥ 10 → [close!?]; moving closed
)

, filling openedempty=
(VT = 0, Q = Qin, V̇B = Q, VB ≤ 10
8 VB ≥ 10 → [close!?]; moving closed
)

:: moving closed
]|

]|
]|

Figure 7 shows a graphical representation of the model. By means of straightforward mathe-
matical analysis of the model, it can be shown that overflow never occurs ifQin ≤ 30/13.

moving closed

VT ≤ 20

Q = 0

V̇B = Q

filling openedempty

VT = 0

Q = Qin

VB ≤ 10

ṫ = −1

V̇B = 0

V̇T = Qin

moving0 closed

VT ≤ 20

Q = 0

t ≥ 0

moving1 closed

VT ≤ 20

Q = 0

V̇B = 3

V̇T = Qin − 3

filling opened

0 ≤ VT ≤ 20

Q = 3

VB ≤ 10

VT = VT0

VB = 0

VB, t := 0, 1

t ≤ 0 →
[skip]

open!?

[skip]

V
B ≥

10→
[close!?]

VB ≥ 10 →
[close!?]

Figure 7: Graphical representation of the normalizedχ model.

20

3.8 Tool based verification

As a final step, for the purpose of tool-based verification, the model is translated to the input lan-
guage of the hybrid IO automaton based tool PHAVer (Frehse 2005). Since most hybrid automata,
including PHAVer, do not know the concept of an algebraic variable, first the algebraic variables
are eliminated from theχ model. Because of the consistent equation semantics ofχ , each occur-
rence of an algebraic variable in the model can simply be replaced by the right hand side of its
defining equation. The urgency due to unguarded undelayablestatements is in principle translated
by defining the corresponding flow clause as false. The resulting PHAVer model follows below.
Note that an additional variablex is introduced and the derivatives ofVb andVt need to be defined
in all locations, because of the current inability of PHAVerto define false as flow clause.

automaton filling_line

state_var: Vt,Vb,t,x;

parameter: Vt0,Qin;

synclabs : open,close,tau;

loc moving_closed:

while Vt <= 20 & x==0 wait {x’==1 & Vb’==0 & Vt’==0};

when true sync tau do {Vt’==Vt & Vb’==0 & t’==1 & x’==0}

goto moving0_closed;

loc moving0_closed:

while Vt <= 20 & t >= 0 wait {Vb’==0 & t’==-1 & Vt==30/13};

when t <= 0 sync tau do {Vt’==Vt & Vb’==Vb & t’==t & x’==0}

goto moving1_closed;

loc moving1_closed:

while Vt <= 20 & x==0 wait {x’==1 & Vb’==0 & Vt’==0};

when true sync open do {Vt’==Vt & Vb’==Vb & t’==t}

goto filling_opened;

loc filling_opened:

while Vt >= 0 & Vt <= 20 & Vb <= 10 wait {Vb’==3 & Vt’==30/13-3};

when Vt==0 sync tau do {Vt’==Vt & Vb’==Vb & t’==t}

goto filling_openedempty;

when Vb >= 10 sync close do {Vt’==Vt & Vb’==Vb & t’==t & x’==0}

goto moving_closed;

loc filling_openedempty:

while Vt == 0 & Vb <= 10 wait {Vb’==30/13};

when Vb >= 10 sync close do {Vt’==Vt & Vb’==Vb & t’==t & x’==0}

goto moving_closed;

initially moving_closed & Vt == Vt0 & Vb==0 & x==0;

end

The following properties were derived: ifQin = 30/13 and 0≤ VT0 ≤ VTmax−30/13, overflow
does not occur, and the storage tank does not become empty when filling a bottle. The volume of
the storage tank then remains in the regionVT0 ≤ VT ≤ VT0 + 30/13. If Qin > 30/13, eventually
overflow occurs. IfQin < 30/13, eventually the container becomes empty every time a bottle is
filled. In this small example, these properties can also be derived by means of straightforward
mathematical analysis of theχ models of Section 3.6 or 3.7.

4 Conclusions

Process algebra originated in the domain of theoretical computer science, where it was designed
for the purpose of reasoning about the behavior of concurrent discrete-event systems. Recently,
process algebra theory has been extended to include also continuous-time systems, and combined
discrete-event / continuous-time, or hybrid systems. Theχ process algebra, that has been used

21

as an example in this chapter, illustrates that process algebra is not only suited to verification,
but also very well suited to high level modeling and simulation of complex dynamical systems.
The compositional semantics of a process algebra facilitates modular composition of processes
and statements using not only parallel composition, but also sequential composition, and in fact
any kind of combination of statements by means of the processalgebra operators. The equational
reasoning, that is characteristic of process algebra, allows rewriting of complex specifications to a
straightforward normal form, where parallel composition and many other operators and statements
have been eliminated. For theχ process algebra, the normal form is very similar to a hybrid
automaton, and thus simplifies the use and development of tools for simulation and verification.

Acknowledgments

The authors thank Albert Hofkamp for providing the main functionality of theχ toolset, and for
many helpful comments on drafts of this text. They thank RolfTheunissen for his preparative work
on the bottle filling example, and for analysis of the properties of the resulting hybrid automaton
using PHAVer. Finally, they thank Ramon Schiffelers for enabling hybrid simulation ofχ models.

References

Alur, R., T. A. Henzinger, and P. H. Ho (1996). Automatic symbolic verification of embedded
systems.IEEE Transactions on Software Engineering 22(3), 181–201.

Baeten, J. C. M. and C. A. Middelburg (2002).Process Algebra with Timing. EACTS Mono-
graphs in Theoretical Computer Science. Springer-Verlag.

Baeten, J. C. M. and W. P. Weijland (1990).Process Algebra, Volume 18 ofCambridge Tracts in
Theoretical Computer Science. Cambridge, United Kingdom: Cambridge University Press.

Beek, D. A. v., K. L. Man, M. A. Reniers, J. E. Rooda, and R. R. H.Schiffelers (2006). Syntax
and consistent equation semantics of hybrid Chi.Journal of Logic and Algebraic Program-
ming 68(1-2), 129–210.

Beek, D. A. v. and J. E. Rooda (2000). Languages and applications in hybrid modelling and
simulation: Positioning of Chi.Control Engineering Practice 8(1), 81–91.

Beek, D. A. v., A. van den Ham, and J. E. Rooda (2002). Modelling and control of process
industry batch production systems. In15th Triennial World Congress of the International
Federation of Automatic Control, Barcelona. CD-ROM.

Bergstra, J. A. and J. W. Klop (1984). Process algebra for synchronous communication.Infor-
mation and Control 60(1/3), 109–137.

Bergstra, J. A. and C. A. Middelburg (2005). Process algebrafor hybrid systems.Theoretical
Computer Science 335(2/3), 215–280.

Bortnik, E. M., N. Trčka, A. J. Wijs, B. Luttik, J. M. van de Mortel-Fronczak, J. C. M. Baeten,
W. J. Fokkink, and J. E. Rooda (2005). Analyzing a Chi model ofa turntable system using
Spin, CADP and Uppaal.Journal of Logic and Algebraic Programming 65(2), 51–104.

Bundy, A. (1999). A survey of automated deduction. In M. Wooldridge and M. Veloso (Eds.),
Artificial Intelligence Today. Recent Trends and Developments, Volume 1600 ofLecture
Notes in Computer Science, pp. 153–174. Springer Verlag.

Cassandras, C. G. and S. Lafortune (1999).Introduction to Discrete Event Systems. Springer
International Series on Discrete Event Dynamic Systems. Springer.

22

Clarke, E. M., O. Grumberg, and D. A. Peled (2000).Model Checking. MIT Press.

Cuijpers, P. J. L. and M. A. Reniers (2005). Hybrid process algebra.Journal of Logic and
Algebraic Programming 62(2), 191–245.

Fábián, G. (1999).A Language and Simulator for Hybrid Systems. Ph. D. thesis, Eindhoven
University of Technology.

Fernandez, J. C., H. Garavel, A. Kerbrat, L. Mounier, R. Mateescu, and M. Sighireanu (1996).
CADP - a protocol validation and verification toolbox. InProceedings 8th Conference on
Computer Aided Verification (CAV’96), Volume 1102 ofLecture Notes in Computer Sci-
ence, pp. 437–440.

Frehse, G. (2005). PHAVer: Algorithmic verification of hybrid systems past HyTech. In
M. Morari and L. Thiele (Eds.),Hybrid Systems: Computation and Control, 8th Inter-
national Workshop, Volume 3414 ofLecture Notes in Computer Science, pp. 258–273.
Springer-Verlag.

Groote, J. F. (1997). The syntax and semantics of timedµCRL. Technical Report SEN-R9709,
CWI, The Netherlands.

He, J. (1994). From CSP to hybrid systems. In A. W. Roscoe (Ed.), A Classical Mind, Essays
in Honour of C.A.R. Hoare, pp. 171–189. Prentice Hall.

Henzinger, T. A., P.-H. Ho, and H. Wong-Toi (1995). A user guide to HYTECH. In First Inter-
national Conference on Tools and Algorithms for the Construction and Analysis of Systems
TACAS, Lecture Notes in Computer Science 1019, pp. 41–71. Springer Verlag.

Hoare, C. A. R. (1985).Communicating Sequential Processes. Englewood-Cliffs: Prentice-
Hall.

Hofkamp, A. T. (2001).Reactive machine control, a simulation approach usingχ . Ph. D. thesis,
Eindhoven University of Technology.

Holzmann, G. J. (2003).The SPIN Model Checker: Primer and Reference Manual. Boston:
Addison Wesley Professional.

Kunkel, P. and V. Mehrmann (2006).Differential-Algebraic Equations: Analysis and Numeri-
cal Solution. EMS Publishing House.

Larsen, K. G., P. Pettersson, and W. Yi (1997). UPPAAL in a Nutshell.Int. Journal on Software
Tools for Technology Transfer 1(1–2), 134–152.

Linz, P. (2001).An Introduction to Formal Languages and Automata. Jones and Bartlett.

Milner, R. (1980).A Calculus of Communicating Systems, Volume 92 ofLecture Notes in Com-
puter Science. Springer-Verlag.

Milner, R. (1989).Communication and Concurrency. Prentice Hall.

Naumoski, G. and W. Alberts (1998).A Discrete-Event Simulator for Systems Engineering. Ph.
D. thesis, Eindhoven University of Technology.

Rounds, W. C. and H. Song (2003). Theφ-Calculus: A language for distributed control of
reconfigurable embedded systems. In O. Maler and A. Pnueli (Eds.), Hybrid Systems :
Computation and Control, 6th International Workshop, Lecture Notes in Computer Science
2623, pp. 435–449. Springer-Verlag.

The MathWorks, Inc (2005).Writing S-functions, version 6. http://www.mathworks.com.

23

